Diffusion in Lorentz Lattice Gas Automata with Backscattering

نویسنده

  • H. van Beijeren
چکیده

The probability of first return to the initial interval x and the diffusion tensor D~a are calculated exactly for a ballistic Lorentz gas on a Bethe lattice or Cayley tree. It consists of a moving particle and a fixed array of scatterers, located at the nodes, and the lengths of the intervals between scatterers are determined by a geometric distribution. The same values for x and D=a apply also to a regular space lattice with a fraction p of sites occupied by a scatterer in the limit of a small concentration of scatterers. If backscattering occurs, the results are very different from the Boltzmann approximation. The theory is applied to different types of lattices and different types of scatterers having rotational or mirror symmetries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Gas Automata Simulation of Adsorption Process of Polymer in Porous Media

Lattice gas automata (LGA) model is developed to simulate polymer adsorption process by adding some collision rules. The simulation result of the model is matched with batch experiment and compared with accepted isothermal adsorption equations. They show that the model is viable to perform simulation of the polymer adsorption process. The LGA model is then applied for simulating continuous poly...

متن کامل

Anomalous Diffusion and Quantum Interference Effect in Nano-scale Periodic Lorentz Gas

Recent advances in submicrometer technology have made it possible to confine the two-dimensional electron gas into high-mobility semiconductor heterostructures. Such structure with a lattice of electrondepleted circular obstacles are called quantum antidot lattices, or quantum Lorentz gas systems. By using the semiclassical scattering theory, we show that quantum interference in finite-size ope...

متن کامل

Quantum Mechanics of Lattice Gas Automata I. One Particle Plane Waves and Potentials

Classical lattice gas automata effectively simulate physical processes such as diffusion and fluid flow (in certain parameter regimes) despite their simplicity at the microscale. Motivated by current interest in quantum computation we recently defined quantum lattice gas automata; in this paper we initiate a project to analyze which physical processes these models can effectively simulate. Stud...

متن کامل

Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell

In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...

متن کامل

The Distribution of Free Path Lengths in the Periodic Lorentz Gas and Related Lattice Point Problems

The periodic Lorentz gas describes the dynamics of a point particle in a periodic array of spherical scatterers, and is one of the fundamental models for chaotic diffusion. In the present paper we investigate the Boltzmann-Grad limit, where the radius of each scatterer tends to zero, and prove the existence of a limiting distribution for the free path length of the periodic Lorentz gas. We also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004